Morphogenesis of Macro-Algae Team

UNDERSTANDING “GREEN” MULTICELLULARITY: DO SEAWEEDS HOLD THE KEY?


Coates JC, Aiman UE and Charrier B.

Living organisms are unicellular, composed of a single cell, or multicellular, where a group of up to ~1012 cells functions co-operatively (Kaiser, 2001). All multicellular organisms evolved from single-celled ancestors; every individual organism arises from a unicell and reproduces by forming unicells. Multicellularity enables competitive advantages, and may have shaped our oxygen-rich atmosphere (Grosberg and Strathmann, 1998; Kaiser, 2001; Schirrmeister et al., 2013). Multicellularity has evolved multiple times: animals, plants, algae, amoebae, fungi, and bacteria are or can all be multicellular (King, 2004; Grosberg and Strathmann, 2007; Rokas, 2008; Claessen et al., 2014). Multicellularity can be clonal (arising from division of a single cell) or aggregative (aggregation of genetically diverse cells), with clonal multicellularity considered evolutionarily more stable (Grosberg and Strathmann, 1998). The molecular mechanisms by which organisms become multicellular are not well understood. In this article, we outline eukaryotic multicellular evolution, and discuss how to increase our future understanding.

Front. Plant Sci.
5:737. doi: 10.3389/fpls.2014.00737
2015
http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00737/full
pdf document